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TRANSFORMATION DIAGRAMS
Isoconversional method from calorimetric data
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Abstract

Transformation diagrams are one of the most reliable ways to predict the thermal behavior of the ma-
terials. In this work, the crystallization process of several metallic glasses and polymer materials was
analyzed and two isoconversional methods are applied to perform kinetic analysis of non-isothermal
heating/cooling and isothermal processes.

Moreover, the diagrams were constructed from modeling experimental data without the
knowledge of the kinetic model. There was a good agreement between experimental data and the
calculated curves, which verifies the reliability of the method and the validity of the rate constant
model description.
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Introduction

The knowledge of the thermodynamic behavior of materials, i.e. the crystallization trans-
formation diagrams, is important to control their structure and modify their properties.
For instance, processes as crystallization promote changes in materials properties. In the
modeling of the crystallization process, we will distinguish cold crystallization as against
solidification from the melt. Both crystallization processes will be produced under iso-
thermal or dynamic (heating or cooling) regime. The main difference is that cold crystal-
lization of a material may be promoted by pre-existing nuclei. However, solidification
from the melt it is expected to be driven by nucleation [1].

The classical theories of nucleation and crystal growth have been developed in-
dependently by several authors [2–4]. Transformation diagrams are one of the most
reliable ways to predict the thermal behavior of the material. They have led to the de-
termination of time–temperature–transformation, T–T–T, curves for the description
of the isothermal crystallization reaction since the work of Uhlmann [5]. The recent
literature demonstrates that this field presents a great scientific interest. The T–T–T
diagrams are widely applied to study the kinetic of solid state reactions and solidifica-
tion; i.e., the thermal stability of glasses [6], the eutectic decomposition in solidified
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alloys [7], the cure behavior of resins [8], the liquid crystalline phase and time to
gelation [9] or the solid state transformations in metallic alloys [10]. Experimentally,
the crystallization kinetics of materials can be assessed by numerous conventional
techniques as X-ray diffraction complemented with microstructure observation [11],
resistivity measurements [10], transmission electron microscopy (TEM) [12] or scan-
ning probe microscopy (SPM) [13]. In particular, the thermoanalytical techniques
(TA), such as differential thermal analysis (DTA), and differential scanning calorim-
etry (DSC) are ones of the most often applied [14–15].

Furthermore, two transformation diagrams have been introduced [16–17] to de-
scribe non-equilibrium crystallization under continuous heating or cooling regimes,
namely the T–HR–T (temperature–heating rate–transformation) and T–CR–T (tem-
perature–cooling rate–transformation) diagrams. In this work the crystallization pro-
cess, cold crystallization process and solidification from the melt, are analyzed using
two isoconversional methods to obtain the transformation diagrams: tempera-
ture–heating/cooling rate and temperature–time. The thermal study is performed by
means of differential scanning calorimetry (DSC). All transformation curves are ob-
tained from the analysis of non-isothermal calorimetric experiments in several mate-
rials: Fe–Ni based metallic glasses obtained by rapid solidification and polymer
blends with PEG6000 (PEG–PD).

Crystallization kinetics

Cold crystallization

To explain the thermal behavior on crystallization, each crystallization step is as-
sumed to have a rate of transformation given by the direct derivative of the well-
known JMAE expression [2–4, 18]
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with K(T) the rate constant which presents a different form under homogeneous nu-
cleation and for growth of preexisting nuclei and with f(a) a function describing the
mechanism governing the crystallization process. The rate constant is a function
of the nucleation frequency and the crystal growth rate. Very often these values
are not experimentally known, and then the rate constant is arbitrarily assumed to
be given by the following Arrhenius expression in the cold crystallization.

K(T)=k0exp (–E/RT) (2)

where the pre-exponential factor, k0, and the apparent activation energy, E, can be
deduced from calorimetric measurements, both quantities assumed to be practi-
cally independent of temperature in the temperature interval analyzed.

Several methods can be applied to obtain the activation energy. Kinetic analysis
of the non-isothermal data has been subject of numerous criticisms [19–21]. In the
case of a complex mechanism, peak area evolution methods and model-fitting meth-
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ods give only a mean value of the kinetic parameters and isoconversional methods
can be used to elucidate the kinetics of the process [19]. In our work, the isoconver-
sional method developed by Málek [22–24] is applied to obtain the E value from
non-isothermal DSC scans at several heating rates in the crystallization process of
Fe–Ni based alloys produced by rapid solidification.

Under isothermal conditions, Eq. (1) can be integrated to give
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This equation, when represented as temperature vs. the time needed for crys-
tallization of a fixed fraction, α, of the material, gives the T–T–T curve.

By the same procedure, integration of Eq. (1) under constant rate tempera-
ture variation, β, gives

g
f

k E

RT
( )

( )
expα

α
α

β

α

= −

 


∫∫

′
1 0

0

d = dT (4)

The solution obtained can be represented in a T–HR–T diagram. Usually, the
values for the crystallization process that are obtainable from DSC experiments
[25] and which are essential in the empirical determination of the low-tempera-
ture parts of the T–T–T and T–HR–T curves are the activation energy and kof(a).

Once the value of E is known, it is usual to evaluate the function f(a) from
the continuous heating experiments and to compare the value obtained with that
obtained in the isothermal experiments [26]. However, a method of obtaining
T–HR–T and T–T–T diagrams from non-isothermal data assuming the same crys-
tallization process under isothermal conditions can be applied. T–HR–T curves
can be obtained by integration from Eq. (1) under continuous heating rate [6]
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and T–T–T curves can be obtained by integration from Eq. (1) under isothermal

conditions
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By using the following equation, one can solve the integral of previous equa-
tions even if the value of f(a) is unknown:

d
d

Tα
α β

α

k f

E RT

0 00
( )

exp ( / )= −
∫∫ T (7)

J. Therm. Anal. Cal., 72, 2003

SUÑOL: ISOCONVERSIONAL METHOD 27



To calculate T–HR–T and T–T–T diagrams, it is necessary to solve the right
integral of previous equation; the only experimental data is the activation energy
of the process. This approach is applied to the study of the crystallization behav-
ior of several Fe–Ni based metallic glasses obtained by rapid solidification, Figs 1
and 2 show the T–HR–T curves calculated with the experimental data that corre-
spond to α values of 0.1, 0.5 and 0.9. Curves were compared with the experimen-
tal data from measurements at other heating rates to check the methodological va-
lidity. The results correlated well, which verifies the reliability of the method uti-
lized. Figure 3 shows the T–T–T diagram. In a very similar way to the T–HR–T
case, the curves obtained were compared with experimental isothermal data. The
major application of the T–HR–T (T–T–T) curves is for prediction of the amount
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Fig. 1 Temperature–Heating Rate–Transformation diagram of the crystallization pro-
cess of an Fe–Ni based metallic glass. Experimental data (symbols) and calcu-
lated curves (lines) for transformed fractions 0.1, 0.5 and 0.9

Fig. 2 Temperature–Heating Rate–Transformation diagram of the crystallization pro-
cess of an Fe–Ni based metallic glass. Experimental data (symbols) and calcu-
lated curves (lines) for transformed fractions 0.1, 0.5 and 0.9



of material crystallized during treatment of the samples at a certain constant heat-
ing rate (temperature).

Solidification from the melt

The Arrhenius equation approach cannot be applied to solidification from the iso-
tropic melt because this equation expresses a transformation rate increase as a
function of temperature, while in solidification processes the rate behaves revers-
ibly. The reason is that in this case the process is driven not by nucleus growth,
but by nucleation. Hence, a certain amount of undercooling, DT=Tm–T, is neces-
sary to induce solidification [27]. The driving force for nucleation is the Gibbs
energy difference (DG) between the liquid and the crystal. At low undercooling,
DG≈DSmDT, with DSm the melting entropy [28]. However, an interfacial energy,
s, is necessary to form the interface between the liquid and the nucleus. As a con-
sequence, the size of the fluctuating forming nucleus has to be larger than a criti-
cal size to be able of growth. Irrespective of the mode of growth, nucleation is ac-
tivated by a crystallization rate constant, K, which is proportional to some power
of the nucleation frequency. According to these assumptions the rate constant can
be approximated to

K(T)=Aexp (–B/T(∆T)2) (8)

where A displays a smooth dependence on temperature with respect to the expo-
nential factor, and B is a constant proportional to σ3/∆S m

2 [28].
Here, an isoconversional method, similar to the usually applied to find the

activation energy for a given degree of conversion, transformed fraction, a, is de-
veloped to evaluate the constant B in the case of solidification from an isotropic
melt. A description of the isoconversional method is given in [29, 30]. Calcula-
tion of constant B is based on a multiple-scan method that requires several mea-
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Fig. 3 Temperature–Time–Transformation diagram: Fe–Ni based metallic glass. Ex-
perimental data (symbols) and calculated curves (lines) for transformed fractions
0.1, 0.5 and 0.9



surements at different cooling rates. If we repeat the procedure for different val-
ues of a, the invariance of B with respect to a (which is a basic assumption for the
validity of the model) is checked in a simple and reliable manner. This operation
allows testing the melting temperature Tm accuracy at same time. A first estima-
tion of Tm results from previous heating, where samples are completely melted.

Once B and Tm are known, it is possible to evaluate directly from the experi-
mental data the kinetic model. Nevertheless, the knowledge of the kinetic model
is not necessary to obtain the transformation diagrams. From the B and Tm values
and using Eq. (8), the integral from Eq. (1) under isothermal regime at tempera-
ture T0 up to a degree of crystallinity a0 (annealing time t0) is

g(α)=exp [–B/T0(∆T0)2]t0 (9)

with DT0=Tm–T0.
Similarly, under continuous cooling at a rate c, the integrated form of Eq. (1)

under cooling conditions becomes
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The quantity g(a0) is independent of the mode of crystallization, i.e. isother-
mal conditions or continuous cooling conditions. Once its value for a given trans-
formed fraction a0 is known, the analytical expression for g(a0)=g(a0(T,t)) for
any pair (T,t) is given by
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In this way, we can obtain the pairs (T,t) that produces the same transformed
fraction.

The analytical expression of g(a0)=g(a0(T,c)) for any pair (T,c) is given by
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We can obtain the pairs (T,c) producing the same transformed fraction. Thus,
the forms of the curves T=T(t) and T=T(c) for a fixed value of a, are obtained by
means of the previous equations. Figures 4, 5 and 6 show calculated T–CR–T and
T–T–T curves (lines) and several experimental DSC data (symbols) for trans-
formed fractions corresponding to 0.1, 0.5 and 0.9 for a pharmaceutical blend
PEG–PD. As expected in any solidification process, the solidification onset shifts
to higher temperatures when the cooling rate decreases. We can state that the
model gives a good description of the solidification process.
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Fig. 4 Temperature–Cooling Rate–Transformation diagram of the solidification pro-
cess of a pharmaceutical blend (PEG–PD). Experimental data (symbols) and cal-
culated curves (lines) for transformed fractions 0.1, 0.5 and 0.9

Fig. 5 Temperature–Cooling Rate–Transformation diagram of the solidification pro-
cess of a pharmaceutical blend (PEG–PD). Experimental data (symbols) and cal-
culated curves (lines) for transformed fractions 0.1, 0.5 and 0.9

Fig. 6 Temperature–Time–Transformation diagram of the solidification process of a
pharmaceutical blend (PEG–PD). Experimental data (symbols) and calculated
curves (lines) for transformed fractions 0.1, 0.5 and 0.9



Conclusions

Transformation diagrams are one of the most reliable ways to predict the thermal be-
havior of the materials. Once a kinetic model has been determined, one can construct
the transformation diagrams. However, in this work the diagrams were constructed
without the knowledge of the kinetic model using calorimetry experiments. All the
transformation curves are obtained from non-isothermal data. Two isoconversional
methods are applied to perform the kinetic analysis. The methods were applied to an-
alyze the cold crystallization and the solidification from the melt respectively.

The usefulness of the methods is illustrated by analysis of the crystallization
process in two model materials: blends of polyethylene glycol 6000 with a pharma-
ceutical drug (PEG–PD) and Fe–Ni based metallic glasses obtained by rapid solidifi-
cation (Fe–Ni). A good concordance is observed between the experimental curves
obtained in the transformation diagrams by calculation and the experimental data,
which verifies the reliability of the methods.
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